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A series approach to wetting and layering transitions: 
111. The chiral clock model 

K Armitstead and J M Yeomans 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 11 May 1987 

Abstract. In the third of this triad of papers which study interfacial phase transitions using 
series expansions we treat the wetting transition of an interface in the three-state chiral 
clock model. Previous work has shown that on a simple cubic lattice at low temperatures 
the interface wets through d large, possibly infinite, number of layering transitions. We 
extend the low-temperature series results to an arbitrary number of nearest neighbours and 
show that, in the mean-field limit of infinite coordination number, only two layering 
transitions are seen. This is in agreement with numerical solutions of mean-field equations. 
Hence the mean-field approximation in this case does not provide a correct description of 
interface behaviour in three dimensions. 

1. Introduction 

In this, the last of three papers on the application of series expansions to interface 
problems, we study the wetting of an  interface in the three-dimensional, three-state, 
chiral clock model. This extends previous work (Armitstead et a1 1986), the results 
of which are summarised below. The model comprises three equivalent states with 
the wetting transition occurring when one of the coexisting phases intrudes at a 
boundary between the other two. The wetting layer therefore has two interfaces, both 
of which may fluctuate, in contrast to the semi-infinite systems studied in the first two 
papers of this series (Armitstead and Yeomans 1987, 1988), where one of the interfaces 
is replaced by a rigid wall. This makes the calculations more complex, but the same 
approaches-low-temperature series and mean-field theory-are still applicable. Our 
particular aim in this paper is to compare the two approximations and show that the 
results obtained from the low-temperature series for a three-dimensional simple cubic 
lattice differ from those resulting from the use of mean-field theory. 

The rest of the introduction is devoted to a description of the chiral clock model 
and a summary of the results obtained previously from a low-temperature expansion 
(Armitstead et a1 1986). Section 2 describes how the mean-field equations of the model 
can be set up  and solved numerically. This gives a qualitatively different phase diagram 
from the low-temperature series. The discrepancy is resolved in 9 3 where the low- 
temperature expansion is generalised to allow for an arbitrary number of nearest 
neighbours. Taking the coordination number to infinity gives a low-temperature 
analytical approximation to the mean-field equations (Szpilka and Fisher 1986), the 
results of which agree with those obtained numerically. The analytic approach allows 
us to show that mean-field theory predicts the wrong phase diagram because it 
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174 K Armitstead and J M Yeomans 

underestimates the fluctuations which lead to the layering transitions. In addition, we 
demonstrate how the phase diagram develops from the simple cubic case to the 
mean-field limit as the coordination number is increased. Finally, in 0 4, we summarise 
the important results from both this and our earlier papers in the series (Armitstead 
and Yeomans 1987, 1988). 

The three-state chiral clock model is defined by the Hamiltonian 

H = -;J, cos[2.rr(nl,, - nl, , . ) /3]  - J  c cos[2.rr(n1., - n,,,,, + A)/31  (1.1) 
VJ ' 'J 

where the variables nv are situated on each site of a cubic lattice and can take the 
values 0, 1,2. i labels two-dimensional layers perpendicular to a given axial direction 
a n d j  labels sites within each layer. Hence the first sum is taken over nearest neighbours 
within the layers, whereas the second is between nearest neighbours along the axial 
direction. At zero temperature the ordering within the layers is ferromagnetic, although 
the value of n,, may vary from layer to layer: for A < f the ordering between layers is 
ferromagnetic; for A > 4, however, there is a chiral ground state, . . .012012012 . . . . 

To study the interface properties of the three-state chiral clock model (Huse and 
Fisher 1984), we introduce an interface perpendicular to the axial direction by forcing 
the spins at i =  -cc and i = + a  to take the values 0 and 2, respectively. This results 
in a 0 :  2 interface for sufficiently small A. As A is increased, however, the energy of 
a 0 : 1 interface (and equivalently 1 : 2 and 2 : 0) decreases, whereas that of a 0: 2 interface 
increases. Hence it becomes favourable at a certain value, A = a ,  for the interface to 
wet, and for the simple 0 : 2 interface to be replaced by the configuration 0 : 11 . . . 11 : 2. 
Note that this is a purely energetic (zero-temperature) argument and that the number 
of layers, n, with n, = 1, is arbitrary. 

At finite temperatures entropy contributions will also be important. Armitstead et 
a1 ( 1986) used low-temperature series expansions to show that, for small temperatures 
near A =a, the interface wets through a series of first-order layering transitions, with 
n increasing in integer steps as a function of A. The resulting interface phase diagram 
is shown in figure 1. 

I 
0 2 4 6 

I A - ~ I x 1 0 3  

Figure 1.  Interface phase diagram of the three-state chiral clock model on a simple cubic 
lattice, obtained from a low-temperature expansion. 
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The method used was analogous to that described in the first two papers of this 
series (Armitstead and Yeomans 1987, 1988). By establishing the leading-order terms 
which differentiate between the reduced free energies of interface phases n and n ' >  n, 
F,, - F,., the phase sequence could be built up  inductively for successive values of n. 
One complication arose, however, because the usual chains of overturned axial spins 
of length n and their disconnections did not contribute to F,.- F,, to leading order. 
Hence axial chains of length n + 1 and chains of length n with single side bumps also 
needed to be taken into account. The contribution from these could, however, be 
calculated using an extension of the matrix method introduced by Yeomans and Fisher 
(1984). 

In Q 3 of this paper the results of Armitstead et a1 (1986), which were for a simple 
cubic lattice, are extended to general coordination number. First, however, we derive 
and  solve a mean-field theory for the three-state chiral clock model with an interface. 
We find that the results disagree with those obtained from low-temperature series. 

2. Numerical mean-field theory 

A mean-field theory for the three-state chiral clock model was first derived by Ottinger 
(1982), who analysed the bulk phase diagram. Although mean-field theory has inherent 
limitations in that it underestimates the effects of thermal fluctuations, the approxima- 
tion usually leads to a qualitatively correct picture in three dimensions. However, 
Szpilka and  Fisher (1986) have recently shown that this is not the case for the bulk 
properties of the three-state chiral clock model. Therefore, we now use a mean-field 
approximation to study the interface properties of the model to see if the layering 
transitions predicted by low-temperature series persist. 

To derive the mean-field equations it is helpful to write the three spin states as two 
dimensional vectors, S, which can take the values 

. I = - (  1 -1 ) &I( - 1 )  so=(;) 2 J 3  2 4 3  

and recast the Hamiltonian (1.1) in the form 

where 
cos 27ra -sin 27ra 
sin 27ra cos 2 m  

R ( a )  = (2.3) 

Using the Bogoliubov inequality as usual (Yokoi et al 1981, Ottinger 1982) gives 
for the mean-field free energy per spin, for a lattice of N layers, 

F = - 1 J ( S , )  - R(-A/3) - (S,+,)+2J0(S,) * ( S , )  - k,T In i exp(H:)] (2.4) 

where (S , )  is the average spin in the ith layer. To introduce an  interface into the system 
(SI) and (S , )  were fixed to be equal to So and S', respectively, and  (SN+l) set equal 
to zero. ( S , )  was then determined for 2 s  is N - 1 by the self-consistency equations 

N , = I  '7 k = O  
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with 

H:=Sk'{J[R(-A/3) *(Sl+l)+R(A/3) . ( S l - , ) ] + 4 J o ( S , ) } / k ~ T .  (2 .6 )  

The solutions to (2 .5 )  were found by choosing an initial set of SI, i = 2 ,  . . . , N - 1, 
and solving iteratively until self-consistency was achieved. The free energy of the 
resulting state was then calculated using (2.4). It is often possible to obtain many 
different solutions depending on the choice of initial conditions. The stable solution 
is that which corresponds to the absolute minimum of the free energy; the other 
solutions are local minima in the free energy, which may be interpreted as metastable 
states. 

Once the stable solutions were obtained as a function of temperature and A, the 
transition could be most easily studied by measuring the excess fraction of spins in 
state SI in each layer i, resulting from the presence of the interface, AS:. Defining 
(S:)"' to be the fraction of spins in layer i in state SI with boundary conditions ( S , )  = S" 
and (S,)  = Sy,  we may write 

AS,' = (S;)O2 - (S:)Oo. (2.7) 

In figure 2 we show plots of AS: against, i, 1 s i s  N =20, at k B T / J =  1.5, J = J o ,  
for three values of A chosen so that phases n = 0, 1 and 6 (for the case N = 20) are 
stable. At this temperature these are the only phases observed. The magnitude of n 
in the final phase increased with the number of layers in the lattice, N ;  otherwise no 
quantitative differences in the results were seen as N was varied. Hence n = 6, for 

. 

I 

lbi 

, 2 0  

Figure 2. A S : ,  the excess fraction of spins in state SI per layer, as a function of i at T = 1.5 
and ( a )  A=0.25002,  ( b )  h=0.25005,  ( c )  A=0.26.  
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N = 20, was interpreted as equivalent to n = a3 in the thermodynamic limit: the inter- 
faces moved as far away from one another as possible before being restricted by the 
size of the lattice. Therefore mean-field theory predicts only two transitions: n = 0 to 
1, and n = 1 to 00. 

This phase picture persists up to k B T / J  = 2.5 ,  above which the phase with n = 2 
appears. However, the phase with n = 3 was not observed. At these temperatures the 
value of AS:  was much reduced compared with those shown in figure 2 ,  although there 
was still a significant increase over its value in the absence of the interface. This is to 
be expected because of thermal fluctuations. Because of these entropic effects, we 
were not able to confidently predict the phase diagram close to the bulk phase boundary. 
The phase diagram from these results is shown in figure 3. Note that, apart from the 
layering transitions which are obviously different from those in figure 1, the 0 :  1 
boundary phase boundary, which has been exaggerated in A - a by a factor of 2 for 
clarity, shifts to a value below A = 0.25 for k B T / J 3  2.25.  There is no evidence for this 
from the low-temperature series results. 

It is not clear why mean-field theory should predict a different phase diagram-it 
is this question which we address in the next section. The change in behaviour at 
higher temperatures should be treated with caution, as it may be above roughening, 
which is neglected by mean-field theory. 

3. Mean-field theory in the low-temperature approximation 

We now extend the low-temperature series results of Armitstead et a1 (1986) to a lattice 
with an arbitrary number of nearest neighbours, qI1 and q L ,  parallel and perpendicular 
to the axial direction, respectively. In the limit q L ,  qll + 00 with qLJo and q i I J  fixed, 
mean-field theory is exact (Thompson 1974, Szpilka and Fisher 1986). Our aim is to 
see how the results of the low-temperature series vary as this limit is approached. To 
show that the phase with n = 2 is not stable in mean-field theory, we need to consider 
terms up to third order in the series expansion. These calculations are outlined, leaving 
the details to appendix 1, in 0 9  3.1, 3.2 and 3.3. In 0 3.4 we show how to calculate the 

Figure 3. Interface phase diagram of the three-state chiral clock model from numerical 
mean-field theory. The kink in the 0 :  1 boundary is exaggerated by a factor of 2 in A-: 
for clarity. 
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leading term in the reduced free-energy difference at general order using a matrix 
method, which is further elucidated in appendix 2. This enables us to show how the 
phase diagram changes as the coordination number is increased, and to demonstrate 
that the sequence of phases in the mean-field limit is n = 0, 1, a. 

First we introduce the notation for the primitive Boltzmann factors corresponding 
to single spin flips. It is useful to define 

KO = Jo/ k B  T K = J / k B T  (3.1) 

8 = A - a  c = COS(2T8/3) s = s i n ( 2 ~ 8 / 3 )  (3.2) 

where, as usual, kB is Boitzmann’s constant and T is the temperature. Then changing 
an in-layer bond from ferromagnetic to antiferromagnetic corresponds to a factor 

w = exp(-3Ko/2). (3.3) 

Two independent Boltzmann weights, x and y, are needed to describe the effect of 
altering an axial bond: 

0-0 + o-1: x=exp[(3s-&c)K/2] (3.4) 

0-0 + 0-2: y = exp( - & c ~  ) (3.5) 

0-1 + 0-2: x-’y = exp[(-3s -&c)K/2]. (3.6) 

All other possibilities follow immediately from (3.4)-(3.6) when the symmetry of the 
Hamiltonian with respect to the different spin states is considered. 

From (3.4)-(3.6) we may write 

y = x2+= (3.7) 

a ln(x) = -3Ks. (3.8) 

where 

This will be used in the calculations which follow, in order to expand y in terms of x 
when y = x2. 

Many of the details of the calculation follow those for the simple cubic lattice 
(Armitstead et a1 1986) and similar expressions for the reduced free-energy differences 
are obtained. However, taking the mean-field limit causes different diagrams to domi- 
nate, and we shall therefore summarise the derivation of the equations to emphasise 
where the differences occur. 

3.1. First order 

Using the notation of 0 1, let F,, be the reduced free energy per interface spin of a 
system with n layers of ones. I t  is convenient to introduce the notation 

Y w4- = $. (3.9) y 4 1 , / 2  = - xq1/2 = x” 

Changing the coordination numbers qll and q1 whilst keeping Kqll and Koql constant 
leaves 2, y’ and C unaltered. 

F,  - F, =22-2(22-y’)(2~-  ~ ) C + O ( K J ~ W - ~ )  n 3 2  (3.10) 

Fo - F, = -3Ksql1/2 + (-2 + 2Z2y’-’ + 4ZF - 42-’F2) 6 + O( G2 w - ~ )  n 2 2 .  (3.11) 

From ground-state energies and single spin-flip excitations we obtain 
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For 

3Ksqll/2 - O(6) (3.12) 

we can use (3.7) and (3.8) to simplify (3.10) and ( 3 . 1 1 ) .  The variation of F,, -Fo as a 
function of 3Ksqil/2 is shown schematically in figure 4. If the reduced free-energy 
difference between two phases is less than O ( ~ * W - ~ ) ,  then the stable phase cannot be 
identified because of higher-order terms in the expansion. Keeping this in mind, it is 
apparent from figure 4 that phases with n 2 2 are degenerate for all 3Ksqll/2, and that 
for 

3Ksql1/2> O(6) (3.13) 

one of these phases is stable. For 

3Ksq11/2 - O ( 6 )  (3.14) 

a phase with n L 1 is stable, and for 

3Ksq11/2- o ( G 2 w - 2 )  (3.15) 

all phases, n a0, are degenerate at first order. 
It also follows that for negative s such that 

/3Ksql1/213 O(6) (3.16) 

n = 0 is stable. Hence there is a transition from n = 0 to a phase with n 2 1 in the region 

-3Ksql1/2 S o( 6 )  3Ksql,/2< O ( 6 2 w - 2 ) .  (3.17) 

Note that if n = 1 is shown to be stable in the region defined in (3.17), then it immediately 
follows from (3 .13 )  that there is another transition to a phase with n 2 2 in the region 
defined by (3.14). 

The above equations depend on 2, v’ and 6, but not on the coordination number 
of the lattice. Therefore the first-order results remain unaltered in the mean-field limit. 

Figure 4. Reduced free-energy differences, F, - Fo,  n 2 1, from first-order low-temperature 
series calculations. 
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3.2. Second order 

The first-order calculations indicate that, to find an expression for the phase boundaries 
and determine the stability of interface phases with different values of n, requires 
consideration of terms in the expansion of at least O(G2). The number of ways of 
obtaining a given diagram, as well as its Boltzmann weight, now depends on qll  and 
q1 as shown by the examples in appendix 1. A plot of F,, - F,, n 3 1, against 3Ksqll/2 
is shown in figure 5 .  It is important to remember that if the difference in free energies 
is less than O( G3wP2) then the ordering of the phases may be altered by higher-order 
terms in the expansion. Phases with n 3 3 are degenerate everywhere, and one of these 
phases is stable for large enough 3Ksqll/2. For 3Ksq,,/2 - O( G) all n 2 2 are degenerate, 
but second-order terms have broken the degeneracy between these phases and n = 1. 
In this region the contribution to the reduced free energy from second-order diagrams, 
together with using (3.7) and (3.8) to expand the terms in (3.10), leads to 

F,  - F,, = -3Ksqll(l -x’3)G+ (1 -x”)’[q1~-’ - ( q L +  1)]G2 

+ O ( G ~ ~ - ~ )  n L 2 .  (3.18) 

Hence there is a 1 : n, n 2 2, boundary at 

(3K~ql1/2)1:,, =i( 1 - Z3)[q1( w - ~  - 1 )  - l ] G  +0( G’w-’) n s 2 .  (3.19) 

As the phase with n = 1 is stable there must be a 0 :  1 boundary. This is given by 

(3K~ql1/2)0:1 = ( 1  -23)2[q1(~-1-1)-1]G2 

+fq,1[(l -x’3)2+x3-2+x’3x-3(2-x’3)]G2+o(G3w-2). (3.20) 

To take the mean-field limit, notice that we can write 

w-’ = exp[ -In( G ) / q l ] .  (3.21) 

Hence 

41(w-I - 1) = q~[ - ln (G) /qL+o(q~2) l .  (3.22) 

Figure 5. Reduced free-energy difference, F, - Fo, n 3 1, from second-order low- 
temperature series calculations. 
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Therefore, taking ql + CO, 6 = constant, 

ql(  w - l  - 1) - 1 + -[In($) + 11. ( 3 . 2 3 )  

For temperatures within the ferromagnetic region the sign of q l (  w - '  - 1) - 1 does not 
change as ql is increased, although its magnitude is decreased. Therefore taking the 
mean-field limit at second order does not change the phase sequence but the boundaries 
are shifted to 

( 3 ~ s q ~ , / 2 ) g f  = (1 -x'3)2[1n(23) -In(;) - 1]6*+0(6~) ( 3 . 2 4 )  

( 3 ~ ~ ~ ~ ~ / 2 ) ; f :  = -;(I - x ' 3 ) [ i n ( q +  1 1 3 + 0 ( ~ ~ )  n 3 2 .  ( 3 . 2 5 )  

So far changing qIl has had no effect on the phase diagram. Note, however, from 
( 3 . 2 3 ) ,  that both in-layer connected and disconnected diagrams are needed and con- 
tribute equally to the free-energy differences in the mean-field limit, whereas for finite 
q1 terms arising from disconnections are O( w )  smaller. 

3.3. Third order 

The calculation needed to show that the mean-field limit does differ from the results 
for the simple cubic lattice is F2 - F,, n 2 3 ,  to third order. The sign of this free-energy 
difference along the 1 : n boundary determines whether n = 2 appears as the next stable 
phase. The terms in the series become considerably more complicated, and many of 
the counting factors cannot be determined without a precise knowledge of the lattice 
structure. However, it is found that, in the region of interest, these factors combine 
such that an  explicit expression can be found. Further description of the method of 
counting the diagrams is given in appendix 1. 

For 3 K s q 1 1 / 2 - 0 ( 6 )  the expression for F 2 -  F, is 

F,-F, = -3Ksq~~/2(1-x'3)[(1-?23)+ql , (~-3-1)x'3]62 
+q11(x-3-  1)?23(1-x'3)2[q_(w - 1  - 1 ) - 1 1 6 ~  

+ 0(64w-2) n > 2 .  

Along the 1 : n boundary, given by ( 3 . 1 9 ) ,  ( 3 . 2 6 )  becomes 

F2-F,, = - ~ ( l - x ' 3 ) 2 [ q l ( ~ - 1 - 1 ) - 1 ] [ 1  - x ' 3 - q ~ l ( x - 3 - 1 ) x ' 3 ] 6 3  

+ 0(64w-2)  n > 2  

which in the mean-field limit reduces to 

( 3 . 2 6 )  

( 3 . 2 7 )  

( F2 - F,,)" = f( 1 - f3))'[ 1 +In( ;)I[( 1 - g 3 )  + x3 ln(x'3)]63 + 0(64) 

This is negative for temperatures such that 

n > 2 .  ( 3 . 2 8 )  

1 +In( 6) < O+O(G) ( 3 . 2 9 )  

and 

1 - z3 + 223 > o + O( ,q. ( 3 . 3 0 )  

First we shall confine ourselves to discussing temperatures which satisfy the inequalities 
( 3 . 2 9 )  and ( 3 . 3 0 ) ,  as this range describes the region in the phase diagram where the 
results from the leading-order terms in a low-temperature expansion are most accurate. 
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Because (3.28) is negative n = 2 does not appear as the next stable phase. We have 
not shown that the next stable phase in the mean-field limit is n =cy); for this we need 
general-order diagrams whose contributions are calculated in 9 3.4. First, however, 
we discuss the somewhat cumbersome expressions (3.26)-(3.28), which have been 
written down because they demonstrate the change in important fluctuations as 911 and 
ql are varied. 

In equation (3.26) we have separated the contributions into those from second-order 
diagrams, i.e. axial chains and their disconnections across two adjacent layers as shown 
in figure 6 ( a ) ,  and third-order diagrams, i.e. similar chains but with extra ‘kinks’ or 
‘bumps’ as shown in figure 6( b). For 3Ksqll/2 - O( w9,) ,  the sign of F2 - F, is determined 
by the relative magnitude of these two terms. Note that varying the coordination 
numbers, qI1 and q l ,  does not cause their respective signs to change. 

Now we examine (3.27) which gives the value of F2 - F,, along the 1 : n boundary, 
within the temperature range specified by (3.29) and (3.30). Note that changing ql 
does not cause a change in sign of this free-energy difference. Hence, as found in 
9 3.2, altering the in-layer coordination number only changes the quantitative nature 
of the phase diagram. However, increasing qll from qI1 = 2 at fixed temperature causes 
the sign of (3.27) to change from positive to negative. Therefore, although the phase 
with n = 2 appears as stable for qI1 > 2, it does so at a non-zero temperature. As qI1 
increases, higher temperatures are required for the appearance of n = 2 as a stable 
phase-the temperature above which it becomes stable is determined by 

z3 - 1 + 4 i i ( ~ - 3  - 1)z3 > o +  o( 6). (3.31) 

Increasing ql1 reduces the contribution to the reduced free-energy difference of the 
third-order diagrams shown in figure 6(  b ) .  It is just these diagrams which stabilise 
the layering transitions: the simple axial chains shown in figure 6(a)  always act 
repulsively between the the interfaces for 3 Ksq11/2 > 0. 

Figure 6. Examples of diagrams which contribute to f,, - f2, n > 2, for 3 K s q , , / 2  - O( w q - )  
at third order. The blocks enclose flipped spins. ( a )  Axial chains and disconnections of 
two-spin flips. ( b )  As in ( a )  with an extra in-layer spin flip. 
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3.4. General order 

Third-order calculations have been sufficient to show that n = 2 is not a stable phase 
at low temperatures for arbitrary coordination number. To demonstrate a 1 : n phase 
boundary, where n is very large and possibly infinite, requires a general-order calcu- 
lation. 

The calculation of the leading-order terms in F,, - F n , ,  n'> n,  for arbitrary qll and 
q1 is considerably more complex than that in the previous papers of this series 
(Armitstead and Yeomans 1987, 1988). The details of the calculation are given in 
appendix 2, where the contributions to the free energy from the important fluctuations 
are built up using transfer matrices. Simple axial chains of length n require a product 
of 2 x 2 matrices. In the vicinity of 3 Ksqi i /2  - O( 6) these give zero contribution to 

At the next order in the expansion the contribution from 'bump' and 'kink' diagrams, 
some examples of which are shown in figure 7, must also be included. This requires 
an 8 x 8 matrix. The elements of this matrix are lattice dependent, as for the third-order 
calculations described in 0 3.3 and appendix 1. However, for 3 K s q 1 1 / 2 - O ( G )  it is 
possible to obtain the expression 
F,, - Fn, = -3 Ksql1/2( 1 - <')[$q11(~-~ - l ) ] n - 2 < 3 ( " - 2 ) [ ~ 3 q l l ( x - 3  - 1) 

O( G f l ) .  

+ ( n  -1)(1 - x " ) ] G f l + n ( l  -X-3)2[+qil(x-3- I ) ] " - ' x  -3(n- 1) 

x[q,(w-'- 1) - l ] G ( n + l ) + O ( ; n + 7 .  (3.32) 

All phases with n ' a  n + 1 remain degenerate to this order of the expansion. 
The coefficient of 3Ksqi i /2  in (3.32) arises from using (3.7) and (3.8) in the 

contribution from axial chains of length n. These chains act repulsively between the 
interfaces for all positive s. For 3KsqI1/2 > O( 6) this term, by itself, is of leading order 

Figure 7. Some examples of 'bump' and 'kink' diagrams of length n, which contribute to 
F,, - F , z ,  n ' >  n, for 3Ksqi/2-O(@) at leading order. 
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and, as it is negative, a phase with n'>  n is stable in this region. A similar consideration 
of F,,.-F,,+,, n'>  n + 1 ,  at the next order of the expansion allows us to deduce that 
n'> n + 1 is stable for 3 Ksql l /2 > O( 6). Repeating this argument iteratively shows that 
for sufficiently large 3Ksql l /2  a phase with very large n is stable. This term alone 
implies that n =cc is stable. However, for nG-O(1) higher-order terms in the 
expansion may be important when determining the phase sequence. 

For 3 K s q l l / 2 - O ( G )  both of the terms in (3.32) contribute at the same order, 
O(G"+'). The second term, from diagrams of length n with side 'kinks' and 'bumps', 
always acts attractively between the two interfaces, and, as in $ 3.3, it is these fluctuations 
which stabilise any layering transitions. 

To determine the next stable phase after n = 1 ,  we examine the sign of F,, - F,,., 
n'> n, along the 1 : n boundary, given by (3.19). This gives 

(F,, - F,,,)l:fl  = -f( 1 - x'3)2( n - 1)[ 1 - x'3 - q11(x-3 - l ) Z 3 ]  

x [ f q , l ( X - 3 -  1)x'3]"-2[q*(w-'- 1 )  - l ] G f l + ' + o ( G f l + 2 w - - 2 ) .  (3.33) 

For temperatures below that given by (3.31), T = TI say, F, - F,,. is negative along 
the 1 : n boundary. Hence a phase with n ' >  n is stable along this boundary. Similar 
consideration of Fnil - F,,,, n'>  n + 1, at next order in the expansion shows that the 
stable phase has n'> n + 1. Repeating this argument recursively leads to a 1 : n boun- 
dary, where n is very large and  possibly infinite. 

For temperatures above TI there is a 2:  n boundary given, from (3.26), by 

(3.34) 

In the same temperature region, F3 - F,,, n 2 4 ,  is positive along the 2:  n, n 2 3, 
boundary, from (3.32) and (3.34). Hence n = 3 is stable and we may use (3.32) to find 
the 3 : n, n 3 4, boundary. It is straightforward to use an  inductive argument as for the 
simple cubic model (Armitstead er a1 1986) to demonstrate a sequence of layering 
transitions. 

Figure 8 shows the phase diagram for finite, but arbitrary, q l l  and q l .  All boundaries 
between phases with n 2 2  meet at a point at finite temperature. However, this 
degeneracy may be lifted by higher-order terms in the expansion. Note that the 0 :  1 
boundary changes direction at sufficiently high temperature, as observed in figure 3. 

In the mean-field limit the above results are qualitatively unchanged. Note, however, 
that the temperature TI, above which we should expect to see layering transitions, is 
given, from (3.30), by kB T 3 5411. The validity of the predictions from a low-temperature 
expansion is questionable at these temperatures, and the absence of a complete layering 
sequence in the numerical mean-field theory should not be surprising. 

In table 1 we compare the predictions for the phase boundaries from the low- 
temperature limit of mean-field theory and a numerical solution of the mean-field 
equations for J = J o .  As expected, the differences are small, but increase with increasing 
temperature. 

4. Discussion 

We first briefly mention other work which is relevant to that discussed in this paper. 
Szpilka and Fisher (1986) studied the bulk phase diagram of the chiral clock model 
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Figure 8. Qualitative interface phase diagram for finite coordination number. 

for arbitrary coordination number using low-temperature series and found that here 
too the results depend on the coordination number. However, the important fluctu- 
ations are not the same as those for the interface problem. 

Note also that Szpilka and Fisher (1986) have shown that the low-temperature 
series can be recast in a way which emphasises that the leading-order terms in the 
expansion can be interpreted as the interaction between interfaces. Although this does 
not give any new results, it provides a more physical way of understanding the 
significance of the terms in the free-energy difference. 

We have made no mention of correction terms, other than to note that for nw9--* - 
O( 1) axial chains with several kinks and bumps will be important, and these correction 
terms must be considered in determining the phase sequence. We cannot therefore 
deduce an infinite sequence of layering transitions, nor indeed that the maximum value 
of n is 00. This point is expanded further by Szpilka (1985). 

We conclude by summarising the main results of this and the preceding two papers 
in the series. Our aim has been to show that low-temperature series expansions provide 
a useful alternative to mean-field theory in the study of interface phase transitions. 

Table 1. A comparison of the phase boundaries, 6 = 5. -$, obtained using a numerical 
solution of the mean-field equations and low-temperature series in the limit of infinite 
coordination number. 

Numerical solution of the 
mean-field equations mean-field limit 

Low-temperature series in the 

k , T / J ,  0 : l  1 : r  0: 1 1:s 

0.5 1 . 9 ~  l o - ' '  2.4 x 1.7 x IO-" 2.7 x IO-" 
9.2 x IO-' 1 .o 2.2 x lo-- 9.4 x IO-' 2.0 x lo-' 

1.5 9.8 x 6.5 x IO-' 6.7 x 5.3 x 
2.0 5.8 x 1.8 x IO-'  2.9 x IO-' 1.2 x lo-' 
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The two approaches usually, but not invariably, give qualitatively similar phase 
diagrams. The low-temperature series approach enables the fluctuations important in 
driving the phase transition to be pinpointed. 

We first considered an interface in a q-state Potts model bound to the surface by 
a bulk field. Using both low-temperature and high-q expansions it was possible to 
show that for all q the interface unbound from the surface through a large, possibly 
infinite, number of first-order phase transitions as coexistence was approached. The 
width of successive phases decreased exponentially with the distance of the interface 
from the surface. The important fluctuations were linear chains of flipped spins 
stretching from the interface to the surface. 

We then went on to consider solid-on-solid models where the interface was bound 
to the surface by a short-range pinning potential. We showed that again unbinding 
occurs through an infinite sequence of first-order transitions as the pinning potential 
tends to zero. Important fluctuations are now much more complicated than simple 
axial chains and hence higher-order terms in the expansion had to be considered to 
establish the phase sequence. This explained why it was difficult to establish an infinite 
sequence of layering transitions in the Abraham model (Duxbury and Yeomans 1985). 

Finally, in this paper, we have considered the interface wetting transition in the 
three-state chiral clock model, We have shown that the mean-field results do not agree 
with the low-temperature expansions. In the former case the system has only two 
layering transitions, whereas in the latter there is a large, possibly infinite, number for 
a simple cLbic lattice. This discrepancy is explained by calculating the dependence 
of the low-temperature series on lattice coordination number, and occurs because 
mean-field theory underestimates the effects of more complicated fluctuations. We 
show that as the coordination number is increased above that pertaining to a cubic 
lattice new phases appear at finite temperatures. 
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Appendix 1 

This appendix is devoted to an outline of the derivation of (3.18) and (3.26), with 
emphasis on the way in which arbitrary coordination number affects the terms in the 
low-temperature expansion. First two spin-flip diagrams, which contribute to both of 
these equations, are considered. 

In table 2 we list the two spin-flip diagrams which contribute to F ,  - F,,, n 2 2, 
together with their Boltzmann weights and counting factors per in-layer spin-these 
describe the difference in the number of ways such a diagram may be placed on the 
lattices (Fisher and Selke 1981). Because of the linked cluster theorem it is only 
necessary to quote the part linear in the number of in-layer spins, and hence m 
disconnections in a diagram contribute a coefficient of ( - l ) m .  To help understand the 
derivation of the terms in the table, figure 9 demonstrates the way in which arbitrary 
axial coordination number affects the Boltzmann weights. For each diagram there are 
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Table 2. Contribution to F ,  - F,,, fl 
are shown in italics, and a bar between two spins indicates that they are disconnected. 

2, from two spin-flip diagrams. The spins flipped 

Count per 
in-layer 

Diagram spin Boltzmann weight 

0001 
00101 

00112 

00111 

0 0 ~ 0 0  

001 2 

001 1 

0000 

001 
001 

001 
001 
01 2 
012 

01 2 
012 
000 
000 
0 00 
0 00 

22 possible different combinations of final spin states. Note that the counts for axial 
diagrams depend on qil , whilst those for in-layer diagrams depend on q l .  

Adding the terms in table 2 gives the contribution to F,  - F,, n 2 2,  from two spin-flip 
diagrams, ( F l - F n ) 2 .  For small 3 K s q l l / 2  we may use (3.7) and (3.8) to expand y in 
terms of x, giving to leading order 

( F ,  - F,)* = (1 - T 3 I 2 [ q ,  w - l  - (q l  + 1 ) ]G2+ O( G23Ksq11/2) 

as in the second term of (3.18). 

n 2 2  (Al.1) 

s \  
\ 
\ 
\ 

S-  

/ \ /  \ 
/ \ 

/ \ 
/ y: 

/ 
\ 

/ \ / /  ' \ 
\ 

S /  S 5 8 
Figure 9. The effect of arbitrary axial coordination number (here qll = 6 )  on a chain of 
flipped spins. Layers are denoted by columns of spins, S. In each layer one spin (marked 
by a caret) is flipped. It is coupled to a neighbouring flipped spin by a full  bond, and to 
unflipped spins by broken bonds. In-layer bonds are not shown. 
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In a similar way, table 3 contains a list of the contributions to F2 - F,,, n 3 3, from 
two spin-flip diagrams, ( F2 - F,,)2.  The leading-order term for small 3 Ksqll/2 is 

(F2-F,)2=-3Ksqll/2(1-13)[1 -?3+q11(~-3-1)Z3]G2 

+O(G2(3K~qil/2)2) n s 3  (Al.2) 

as in the first term of (3.26). For 3Ksqli/2- O(G)  the contribution from diagrams with 
three spin flips is of the same order as the leading term in ( F2 - F,,)2 and therefore 
must also be considered. The counts for these diagrams not only depend on the 
coordination numbers, qll and q l ,  as for the two spin-flip diagrams listed in tables 2 
and 3, but also on the connectivity of the lattice. 

First we consider the contribution from 'dog-leg' diagrams where two connected 
in-layer spins both flip to the same state. These diagrams are listed in table 4(a).  To 
avoid unduly complicated expressions for the Boltzmann weights, we have immediately 
put y = x 2  which from (3.7) and (3.8) will give a leading contribution O(G3w-*) for 

The pairs of spins in the same layer may be connected to the flipped spin in the 
adjacent layer by two, one or zero bonds. Therefore, in order to count the diagrams 
we define c ~ , ( ~ ) , ( ~ )  which counts, for each orientation of in-layer connected spins, the 
number of ways of obtaining the diagram per in-layer spin, such that there are two, 
(one), (zero) axial bonds between flipped spins. Only that part linear in the number 
of in-layer spins is retained in the table, and hence a negative sign has been incorporated 
into the counts to allow for a disconnection (Fisher and Selke 1981). A little thought 
shows that 

(A1.3) 

Adding the contributions in table 4(a) ,  using (A1.3), gives a contribution to the reduced 
free-energy difference from three spin-flip diagrams, 

( F~ - F,, )3 = 0 + o( G3 w - l )  

3Ksqii/2 - O( G). 

c2 + c1 = CO * 

n 3 3 .  (A1.4) 

The contribution O( G3w-')  also arises from 'dog-leg' diagrams, but with the in-layer 
connected spins flipping to different states. The contributions to F2-  F,, n 3 3 ,  from 
such diagams are listed in table 4(b). Using (A1.3) gives 

( F ~  - F , , ) ~  = ql(cl +2c2)23(x-3- 1 ) ( 1 - 1 3 ) 2 ~ 3 ~ - 1 + 0 ( ~ 3 )  n s 3 .  (A1.5) 

Table 3. Contribution to F2-F,,, n 2 3 ,  from two spin-flip diagrams. The spins flipped 
are shown in italics, and a line between two spins indicates that they are disconnected. 

Count per 
in-layer 

Diagram spin Boltzmann weight 
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Table 4. Contribution to F z -  Fn, n 2 3, with y = x'. Flipped spins are shown in italics 
and a bar between two spins indicates that they are disconnected. The notation c,, d,, 
i = 0, 1,2, is defined in the text. 

( a )  Contribution at O( w3q- -2)  

Count per 
in-layer 

Diagram spin Boltzmann weight 

0000 
0000 

0001 
0001 

0001 
0001 

01 12 
0112 

( b )  Contribution at O ( W . ~ ~ - - ' ) .  

0000 
0000 

0001 
0001 

0001 
0001 

01 12 
0112 

(c j  Contribution from dog-leg diagrams at O( w'~.). 

00 00 
0 000 

0001 
0061 

0001 
0001 

01 12 
o i l 2  
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Table 4, (continued) 

Count per 
in-layer 

Diagram spin Boltzmann weight 

( d )  Contribution from axial chains at O(w3‘-). 

0 000 1 

oo(oo1 
000~01 

0010101 

001 01 1 
0001 11 
0 0 / 0 ~ 1 1  

00) 112 

001 I12  
001 1 I 12 

00 1 000 
000~00 

00 l o /  00 

0001 1 

001 12 

00000 

This may be further simplified by noting that 

Cl + 2c2 = 411. (A1.6) 

( F ~ - F , , ) ~  = q,q,123(x-3-~)(1 - 2 3 ) 2 ~ 3 ~ - ~ + 0 ( ~ 3 )  n 2 3 .  (A1.7) 

For finite qll  and qL (A1.7) provides the leading-order term from three spin-flip 
diagrams for 3Ksqll/2-O(G). However, for large 911 and q l ,  Joqll and Jq,  constant, 
the difference between G3w-’ and G3 is very small, and vanishes in the mean-field 
limit, qll and q1 +CO. Therefore we also need to include diagrams O( G3), which are 
three spin-flip diagrams having no connected in-layer flipped spins. These include 
both ‘dog-leg’ diagrams and connected and disconnected axial chains. The contribu- 
tions from these diagrams are listed in tables 4( c) and ( d ) ,  respectively. Analogous 
to the notation in tables 4 ( a )  and ( b ) ,  we have defined d2,(1),(o) to count, for each 
orientation of in-layer disconnected spins, the number of ways of obtaining the diagram 
per in-layer spin, such that there are two, (one), (zero) axial bonds between flipped 
spins. 

Hence 

Using 
dl + dz = do 

dl + 2d2 = 411 

(A1.8) 

(A1.9) 

we may add the contributions from tables 4 ( a ) - ( d )  to obtain the leading-order term 
from all three spin-flip diagrams: 

and 

(FZ-Fn)3= g l123(~-3-  i ) ( i  - 2 3 ) 2 [ 4 1 ~ - 1 - ( q , +  1 ) l ~ ~  

+ o ( G ~ ~ - ~  n 2 3 .  (A1.lO) 
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Together with (A1.2), the contribution from two spin-flip diagrams, this gives equation 
(3.26). 

Appendix 2 

This appendix describes the matrices required to obtain (3.32). The diagrams which 
give the leading-order contribution to F,.- F,, n’> n, for 3Ksq,,/2 - O( G) are axial 
chains of length n and their disconnections with possible ‘kinks’ and ‘bumps’: some 
examples are shown in figure 7. We use a transfer matrix method (Yeomans and Fisher 
1984, Armitstead el a1 1986) to build up such diagrams from left to right accounting 
at each step for the possibility that the chain might be broken and also allowing for 
the addition of two in-layer spins. The matrix elements are the Boltzmann factors 
contributed by the spin flips to the final spin states given by the labels on the rows 
and columns of the matrix. 

The matrix products which must be considered have already been detailed in the 
appendices of Armitstead er a1 (1986) for the simple cubic model. Therefore we refer 
the reader to that paper for an explanation of the equations which we shall use, and 
here just extend the matrices published there to allow for arbitrary coordination number, 
and show how this affects the final results. 

The matrix M which adds bonds between 0-0 layers may be written as 
0-0 

left spin 

M =  

0 
1 

0 

2 

1 

1 
7 - 
2 

1 
2 

1 
1 
- 

3 

7 

a- - 
’. 

1 
2 
- 

right spin 

0 0 1 2 1 1 2 1  

1 2 1 2 2 1 2 2  
- - - 

MI, MI2 MI3 

M3 1 

(A2.1) 

where a bar between two spins indicates that they are disconnected, and the matrix 
elements, M,,, are listed in table 5. We have used the following notation. 

k ( I ) :  the number of ways per in-layer spin that two in-layer connected spins may 
be joined to one spin in the previous layer such that there are two (one) axial bonds 
between the spins. 

m ( n ) :  the number of ways per in-layer spin that two in-layer separated spins may 
be joined to one spin in the previous layer such that there are two (one) axial bonds 
between the spins. 
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k' ( l ' ) :  the number of ways per in-layer spin that one spin may be joined to two 
connected spins in the previous layer such that there are two (one) axial bonds between 
the spins. 

m' ( n ' ) :  the number of ways per in-layer spin that one spin may be joined to two 
separated spins in the previous layer such that there are two (one) axial bonds between 
the spins. 

Table 5. Elements of the matrix M, which adds bonds between 0-0 layers. The notation 
used is explained in appendix 2. 

Matrix 
element Value 

MI 1 

MI 2 

MI 5 

MI, 

MI 8 

M 2  I 

M 2 2  

M23 

M24 

M 2  5 

M 2 7  

M 2 8  

M26 

M3 I 

M32 

M4 I 

M42 

M5 I 

M 5 2  

M.52 

M 7 2  

M* 1 

M a 2  

MI, 

M6 I 

M7 1 

I.1'3 

We mention the important points in the construction of the matrix M. Further 
comments which are also relevant for the simple cubic model may be found in 
Armitstead et a1 (1986). Note however, that the 8 x 8 matrix used there may in fact 
be reduced to a 5 x 5 matrix by combining the rows (columns) 1 with 3, 2 with 4, and 
6 with 7 .  

(a) There are eight final states which must be considered. The reason for listing 
in-layer connections and disconnections separately is that the counting factors for 
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adding the next spin in the chain are different for the two cases. This was not so for 
the simple cubic model (Armitstead er a1 1986), where they could be considered in 
the same row or column. Consequently, many of the Boltzmann weights occur in 
pairs, for example, MI3 and MI6, M24 and M2, ,  etc. 

(b) Only diagrams with at most one layer containing two flipped spins are required. 
Hence Mi,, i, j 2 3 ,  are of higher order and put equal to zero. 

(c) Using relationships such as (A1.3) and (A1.8) we have substituted the counts 
for diagrams having no axial bonds between flipped spins by minus the sum of the 
counts for diagrams having two and one axial bonds between flipped spins. 

(d)  If two in-layer spins flip to different final states instead of the same final states, 
the number of diagrams is doubled. This is because of the loss in symmetry of the 
in-layer spins. The matrices in Armitstead et al( 1986) explicitly displayed this symmetry 
by allowing for more final states. Hence, as noted above, there was an increase in the 
size of M. 

The other matrix we shall need adds spins between 0-1 layers. It will become 
apparent that to the order considered we only need the elements which add a single 
spin. The relevant elements of this matrix, N, are therefore given by 

0- 1 - 1 
2 

1 

0 

The row vectors which add the initial bond between 0-0 and 0-1 layers, Mi and 
N , ,  respectively, are (written as their transposes) 

- 0-0 

0 
1 

0 
2 

1 
1 

2 
2 

1 

2 

1 

1 

2 

2 

1 

2 

M :  = 

- 

- 

- 

0 - 0- 1 

1 

2 

1 

0 

2 
2 

0 
0 

2 
0 

2 
2 

0 
0 

2 
0 

N: = 

- 

- 

- 

0 

W . 3 )  
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Finally, we need the column vectors which describe the final bond between 0-0 
and 0-1 layers, Mf and Nf,  respectively 

0-0 - 

M I  = 

0 

1 

0 
2 

1 

1 

2 
2 

1 

2 

1 

1 

2 
2 

1 
2 

- 

- 

- 

The contribution to F,, - F,,,, n ' >  
(Al . l l )  of Armitstead et a1 (1986) by 

0- 1 - 
0 
1 

0 

2 

1 

1 

2 
2 

1 

2 

1 
1 

2 
2 

1 

2 

Nt = 

- 

- 

- 

(A2.4) 

to order O(G"+l) is given from (A1.9) and 

F,, - F,,, = 2( Ni - M,)M"-'NMr+ 2MiM" ( M f  - N f )  

+(Ni-Mi)M"-'(Nf-Mf) n ' >  n. (A2.5) 

The first two terms are from axial chains of length ( n  + 1) and have a coefficient of 
Gfl+l. Therefore, recalling that 3Ksqll/2- O( G), we may put y = x2 in the matrix 
elements and put equal to zero any elements greater than O( 6) to this order. M reduces 
to a 2 x 2 triangular matrix and the product may be performed to give 

( Ni - Mi) M - ' N M f  + MiM ( M f  - Nf) = 0 + O( G '+'). (A2.6) 

The final term in (A2.5) arises from axial chains of length n with possible kinks 
and bumps. The simple chains, i.e. diagrams with only one spin flipped in each layer, 
have a coefficient of G" and are described by the 2 x 2 matrix in the top left-hand 
corner of M. We must keep the full dependence of y upon x whilst evaluating this 
part of the product in (A2.5), which may be done by diagonalisation of the 2 x 2 matrix. 
Expanding y in terms of x in the final expression gives the leading-order contribution 
to F,, - F,, ,  n '>  n, from axial chains of length n :  

(A2.7) 

The same approach, in principle, could also be applied to the full 8 x 8  matrix. 
However, as we are interested in, and indeed this matrix is only valid for, the 
leading-order term, it is simpler to put y = x z  and explicitly evaluate the product of 
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the resulting sparse matrix, retaining only those terms which may contribute up to 
O( G n + ' ) .  Using 

2k+l=q1,q,/2 2m + n = SlI(4L+ 1)/2 (A2.8) 

and 

2k'+ l '=  411 2m'+ n ' =  qll  (A2.9) 

this gives 

n(1 -X'3)2[tq, l(~-3- 1)1n-LX'3'n-1'[q,(w-' - 1 ) -  l ] G n + ' .  (A2.10) 

Together with (A2.7) this leads to (3.32). 
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